
Visualizing Join Point Selections for Stateful Aspects
Dominik Stein, Stefan Hanenberg, and Rainer Unland

Institute for Computer Science and Business Information Systems (ICB)

University of Duisburg-Essen, Germany

{dstein | shanenbe | unlandR}@cs.uni-essen.de

ABSTRACT
In this position paper we propose an approach to graphically
represent applicability conditions for stateful aspects. We briefly
explicate why we consider the visualization of such application
constraints in model artifacts as beneficial for AOSD. Then, we
develop graphical means to visualize these constraints following a
reverse engineering approach with help of two examples.

1. NEED FOR QUERY MODELS
Queries on join points (i.e. join point selections) are an essential
part of AOSD. Join point queries are necessary to identify all
relevant points in a program (i.e. in its code, or during its
execution) at which aspectual adaptations need to take place.
Finding appropriate means to designate such sets of relevant join
points is a highly active field of research in AOSD [5, 6, 2, 12].
As an indication of this significant interest, different aspect-
oriented systems came up with most various means to specify
such queries, e.g. pointcuts [10], traversal strategies [11], type
patterns [10], logic queries [5, 8, 12], applicability conditions [3],
etc.

Implementation experiences in AOSD have shown that for the
sake of reusability it is beneficial to keep the query specification
separate from the adaptation specification (e.g. by defining an
advice in an superaspect, whose (abstract) pointcut is detailed in
an subaspect) [9, 7]: Doing so allows easy application of existing
aspects in different problem domains; query specifications can be
refined individually (i.e. without considering the adaptations they
are associated with) to meet new or supplementary requirements;
existing query specifications can be reused to form new ones.

Contemplating on the pivotal importance of join point queries in
aspect-oriented software development and the benefits of keeping
it separate from the adaptation specification, we consider it
advisable to have distinct design models that help us understand
and reason about the conditions and constraints under which join
points should be selected.

Such design models seem particularly useful when dealing with
runtime queries, i.e. with the selection of dynamic join points
based on runtime information. Examples of such queries are the
selection of objects depending on their state, or the selection of
messages depending on (certain characteristics of) the control
flow they occur in. In these cases, join points are usually not
selected based on singular and/or instant facts, but also based on
incidents or circumstances that occurred earlier. Graphical
representations have the potential to explicate these facts – and
their chronological dependencies – better than textual notations,
helping us to grasp the whole picture all at once, rather than
putting together the relevant information code line by code line.

Join Point Designation Diagrams (JPDDs) [13] have been
introduced as a novel modeling means to represent join point
quries (a) graphically and (b) separately from the adaptation

specification in (c) distinct model artifacts. JPDDs provide
abstractions to specify queries on classes, their features and
relationships, as well as on messages in a program's control flow.
They lack dedicated support for the visualization of applicability
conditions for stateful aspects, currently, though. This is the kind
of runtime join point query that shall be considered in the
following.

2. STATEFUL ASPECTS
Stateful aspects are recently gaining much attention [3, 4].
Stateful aspects are special (compared to conventional aspects) in
that they take effect only after (if) the system has reached (is in) a
particular state rather than affecting to just any (designated) event
right from the start (until program termination).

Using conventional aspect-oriented approaches, stateful aspects
need to be implemented in two steps: at first, a flag is set once the
respective state is reached; then, once the flag is set, the
crosscutting modifications (e.g. the crosscutting behavior) is put
to action.

[2], for example, present a sample implementation of a simple
publish-subscriber-protocol in JAsCo [14]. They define two hooks
Subscribe and Publish (see following snippets 1 and 3), each of
which is bound to particular operations by means of connectors
(see snippet 2 and 4). The first hook is responsible for identifying
the point in time beginning from which publications should occur.
The second hook nominates those points that will actually cause
the publication to occur (once the first hook has been passed).
1. hook Subscribe {

Subscribe(subscribe(..args))
{ execute(subscribe); } [...] }

2. SubscribeManager.Subscribe subscribe =
new SubscribeManager.Subscribe(

boolean PSComponent.subscribe());

3. hook Publish {
Publish(topublish(..args))

{ execute(topublish); } [...] }

4. PublishManager.Publish publish =
new PublishManager.Publish(

void ComponentX.update*(*));

[1] present another example that prevents the disposal of dirty
documents, i.e. modified documents that haven't been saved to
disk yet. The example makes use of three pointcuts (see snippets
5, 6 and 7): The first one designates those points causing the
"dirty" flag to be set; the second one designates those points
causing the "dirty" flag to be unset; and the third one refers to all
points that ought to be intercepted (in case the "dirty" flag is set).
5. pointcut makeDocumentDirty():

call(void Editor.edit());

6. pointcut makeDocumentClean():
call(void Editor.save()) ||

call(void Editor.create());

7. pointcut disposeDocument():
(call(void Editor.quit()) ||
call(void Editor.create())) &&
if(documentDirty);

Implementing such state dependent aspectual behavior with help
of multiple hooks or pointcuts (and their corresponding advice) is
cumbersome, error-prone, and difficult to discern (particularly in
retrospect). This is because the causal dependency between the
different hooks and pointcuts (and their corresponding advice) is
not obvious nor easy to detect. Close inspection of the code is
necessary.

Novel approaches, such as presented in [2] and [1], promise to
free programmers from the need to keep track of the system state
manually; moreover, their (pointcut) notations allow to indicate
the aspect's dependency on a particular system state explicitly in
the program code.

This paper develops a notation that enables developers to
visualize the state dependent selection of join points. By doing so,
the notation aims to foster the use and specification of stateful
aspects in MDSD.

3. STATE-BASED QUERY MODELS
JPDDs provide abstractions to specify queries on classes, their
features and relationships, as well as on messages in a program's
control flow. They lack dedicated support for the visualization of
applicability conditions for stateful aspects, currently, though. In
the following, a notation is developed that enables developers to
visualize the state dependent selection of join points.

Starting point is a one-to-one visualization of the (conventional)
hooks as specified in [2] (see Figure 1): The first hook designates
the point in time beginning from which publications should occur.
The second hook nominates those points that will actually cause
the publication to occur (once the first hook has been passed).

As with the implementation (cf. [2]), the dependency between the
hooks (in the sense that the latter hook will lead to effects only if
the former hook has been passed) is not visible.

Figure 2 improves over this situation by merging both
representations of Figure 1 into a single representation. That
resulting diagram reflects on the temporal dependency between

the occurrences of the hooks: It selects the second hook only if the
first hook has occurred before.

While this representation efficiently visualizes the dependency
between the hooks, it cannot be considered satisfactory from a
modeling perspective. This is because what we see is two
messages sent from any object to instances of PSComponent and
ComponentX, respectively. What we are actually dealing with is a
stateful aspect, though. No indication is made concerning the state
the system (or the involved objects) are in.

Figure 3 makes explicit what is hidden in the diagram shown in
Figure 2: The first message actually indicates a state change from
state "silent" to state "publish" (at least seen from the perspective
of the aspect). Once in that state, any occurrence of the second
message (causing a self-transition) should be intercepted.

The state-chart based visualization of the join point selection
improves over the interaction-diagram based visualization since it
emphasizes the dependency of the selection on the current system
state. That way it helps to identify the corresponding aspect as a
stateful aspect. Using the novel implementation techniques
presented in [2], the representation can be furthermore mapped
one-to-one to a corresponding aspect implementation.
8. hook PublishSubscribe {

PublishSubscribe(subscribe(..args),
topublish(..args)) {

Waiting: execute(subscribe) > Publish;
Publish: execute(topublish) > Publish;

} [...] }

hook_subscribe

 ?jp1

* : *

<?jp1>subscribe(..)
«execution»

* :
PSComponent

<?jp2>update*(..)

* : * * :
ComponentX

«execution»

 ?jp2

hook_publish

Figure 1: Two (Seemingly) Independent
Join Point Designation Diagrams

hook_publishsubscribe

 ?jp2

<?jp2>update*(..)

* : *

* :
ComponentX

<?jp1>subscribe(..)
«execution»

«execution»

* :
PSComponent

Figure 2: Representing Temporal
Dependencies Between Hooks

<?silent>
*

hook_publishsubscribe

 ?jp

<?publish>
*

PSComponent.
subscribe(..)

<?jp>ComponentX.
 update*(..)

Figure 3: State-Based Selection
of Hooks

9. StatefulPublishManager.PublishSubscribe ps =
new StatefulPublishManager.PublishSubscribe(

boolean PSComponent.subscribe(),
void ComponentX.update*(*));

4. ANOTHER EXAMPLE...
Another example is taken from [1] and visualized in Figure 4:
Three pointcuts are shown; the first one designates points at which
some "dirty" flag should be set; the second one designates points
at which that "dirty" flag should be unset; and the third one
designates all points at which the aspectual behavior is actually to
be performed (in case the "dirty" flag is set).

Similar to the first case, the single specification of each pointcut
does not reveal their temporal inter-dependencies. Figure 5 does a
better job in this respect as it explicates in which order the
selected join points must (and must not) occur.

However, even though the visualization is close to the

corresponding program code using the implementation approach
presented in [1] (cf. [1]), it does not contemplate on the fact that
we are dealing with a stateful aspect. Instead, it reflects on the
communication with an Editor instance and hooks onto messages
being sent to that instance. From a modeling perspective, this is
not satisfactory.
10. pointcut disposeDirtyDocument():

(call(void Editor.quit()) ||
call(void Editor.create())) &&

afterend(call(void Editor.edit()) &&
beforeend(call(void Editor.create()) ||

call(void Editor.save()));

Figure 6 shows a state-chart based representation in which the
method invocations are interpreted as trigger events to state
transitions between states "clean" and "dirty". This representation
helps developers to reason on the selection of join points
depending on the state the system (the document/the aspect) is
currently in.

In doing so, the representation reveals a (supposed) imprecision in
the implementation (cf. [1]): Once in state "dirty", an invocation
to method "create" could escape its interception and, instead,
trigger a state transition to state "clean". To prevent this, the actual
implementation relies on the internals of AspectJ, which executes
multiple pieces of advice – if applied to the same join point –
according to the order they are specified.

We think that models, such as in Figure 7, may help to clarify
such complications by explicating what is actually going on – for
sake of the comprehensibility to both the new and unaware as well
as the experienced yet forgetful software developer.

pointcut_makeDocumentDirty

 ?jp1

* : *

<?jp1>edit()

* : Editor

<?jp2>(save|create) ()

* : * * : Editor

 ?jp2

pointcut_makeDocumentClean

<?jp3>(quit|create) ()

* : * * : Editor

 ?jp3

pointcut_disposeDocument

* : Aspect

– documentDirty :
Boolean = true

 Operations

 Attributes

Figure 4: Three (Seemingly) Independent
Join Point Designation Diagrams

pointcut_disposeDocument

 ?jp3

{not}
<?jp2>(save|create)()

* : *

<?jp1>edit()

* : Editor

<?jp3>(quit|create)()

Figure 5: Representing Temporal
Dependencies Between Join Points

<?clean>
*

pointcut_disposeDocument

 ?jp

<?dirty>
*

Editor.edit()

<?jp>Editor.quit() |
 Editor.create()

Editor.save() |
Editor.create()

Figure 6: State-Based Selection of Join
Points

<?clean>
*

pointcut_disposeDocument

 ?jp

<?dirty>
*

Editor.edit()

<?jp>Editor.quit() |
 Editor.create()

Editor.save()

Editor.create()

Figure 7: State-Based Selection of Join
Points

5. REFERENCES
[1] Bockisch, Chr., Mezini, M., Ostermann, K., Quantifying

over Dynamic Properties of Program Execution, DAW
Workshop, at: AOSD 2005, March 2005, Chicago, IL

[2] De Fraine, B., Vanderperren, W., Suvée, D., Brichau, J.,
Jumping Aspects Revisited, DAW Workshop, at: AOSD
2005, March 2005, Chicago, IL

[3] Douence, R., Fradet, P., Südholt, M., Composition, Reuse
and Interaction Analysis of Stateful Aspects, AOSD'05,
Lancaster, UK, March 2004, ACM, pp. 141-150

[4] Dynamic Aspects Workshop, March 15, 2005, AOSD'05,
Chicago, IL, http://aosd.net/2005/workshops/daw/

[5] Gybels, K., Brichau, J., Arranging language features for
more robust pattern-based crosscuts, in: Proc. of AOSD'03,
March 17-21, 2003, Boston, MA, ACM, pp. 60-69

[6] Hanenberg, S., Hirschfeld, R., Unland, R., Morphing
Aspects: Imcompletely Woven Aspects and Continous
Weaving, in: Proc. of AOSD '04 (Lancaster, UK, March
2004), ACM, pp. 46-55

[7] Hanenberg, S., Schmidmeier, A., AspectJ Idioms for Aspect-
Oriented Software Construction, in: Proc. of EuroPLoP'03,
June, 25-29, 2003, Irsee, Germany, pp. 617-644

[8] Hanenberg, S., Unland, R., Parametric Introductions, in
Proc. of AOSD 2003, March 17-21, 2003, Boston,

Massachusetts, ACM, pp. 80-89
[9] Hannemann, J., Kiczales, G., Design Pattern

Implementation in Java and AspectJ, in: Proc. of
OOPSLA'02, November 2002, Seattle, WA, ACM
SIGPLAN Notices 37(11), pp. 161-173

[10] Laddad, R., Aspectj in Action: Practical Aspect-Oriented
Programming, Manning Publications, Greenwich, 2003

[11] Lieberherr, K., Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns, PWS
Publishing Company, Boston, 1996

[12] Ostermann, K., Mezini, M., Bockisch, Chr., Expressive
Pointcuts for Increased Modularity, in: Proc. of ECOOP'05,
Glasgow, UK, July 2005, ACM

[13] Stein, D., Hanenberg, St., Unland, R., Query Models, in:
Proc. of UML 2004, October 2004, Lisbon, Portugal, LNCS
3273, pp. 98-112

[14] Suvée, D., Vanderperren, W., Jonckers, V., JAsCo: An
Aspect-Oriented Approach Tailored for Component-Based
Software Development, in: Proc. of AOSD'03, March 2003,
Boston, USA, ACM

