Visualizing Join Point Selections for Stateful Aspects

Dominik Stein, Stefan Hanenberg, and Rainer Unland
Institute for Computer Science and Business Information Systems (ICB)

University of Duisburg-Essen, Germany
{dstein | shanenbe | unlandR}@cs.uni-essen.de

ABSTRACT

In this position paper we propose an approach tphgcally
represent applicability conditions for stateful ess. We briefly
explicate why we consider the visualization of sagplication
constraints in model artifacts as beneficial for 3@ Then, we
develop graphical means to visualize these conssrénllowing a
reverse engineering approach with help of two exasap

1. NEED FOR QUERY MODELS

Queries on join points (i.e. join point selectioasg an essential
part of AOSD. Join point queries are necessarydantify all

relevant points in a program (i.e. in its code, during its

execution) at which aspectual adaptations needake place.
Finding appropriate means to designate such sa@lefant join

points is a highly active field of research in AOE® 6, 2, 12].

As an indication of this significant interest, @ifént aspect-
oriented systems came up with most various meanspécify

such queries, e.g. pointcuts [10], traversal sgiate[11], type
patterns [10], logic queries [5, 8, 12], applicabitonditions [3],

etc.

Implementation experiences in AOSD have shown foatthe
sake of reusability it is beneficial to keep thesyuspecification
separate from the adaptation specification (e.g.défming an
advice in an superaspect, whose (abstract) poiigcdétailed in
an subaspect) [9, 7]: Doing so allows easy apjinatf existing
aspects in different problem domains; query speatifbns can be
refined individually (i.e. without considering tlaelaptations they
are associated with) to meet new or supplementaryirements;
existing query specifications can be reused to foew ones.

Contemplating on the pivotal importance of joinmgojueries in
aspect-oriented software development and the hisredfkeeping
it separate from the adaptation specification, vemsaer it
advisable to havedistinct designmodels that help us understand
and reason about the conditions and constraintsruntich join
points should be selected.

Such design models seem particularly useful wheairde with
runtime queries, i.e. with the selection of dynamic join points
based on runtime information. Examples of such igaeare the
selection of objects depending on their state herdelection of
messages depending on (certain characteristicghef)control
flow they occur in. In these cases, join points aseally not
selected based on singular and/or instant factsalso based on
incidents or circumstances that occurred earlierap@ical
representations have the potential to explicateettfacts — and
their chronological dependencies — better thanugdxtotations,
helping us to grasp the whole picture all at onegher than
putting together the relevant information code liyecode line.

Join Point Designation Diagrams (JPDDs) [13] haveerb
introduced as a novel modeling means to repres@nt goint
quries (a) graphically and (b) separately from tdaptation

specification in (c) distinct model artifacts. JP®Dprovide
abstractions to specify queries on classes, theatufes and
relationships, as well as on messages in a progreontrol flow.

They lack dedicated support for the visualizatiérapplicability

conditions for stateful aspects, currently, thoughis is the kind
of runtime join point query that shall be considerm the

following.

2. STATEFUL ASPECTS

Stateful aspects are recently gaining much atten{i®, 4].
Stateful aspects are special (compared to conveitaspects) in
that they take effect only after (if) the systens h@ached (is in) a
particular state rather than affecting to just éhgsignated) event
right from the start (until program termination).

Using conventional aspect-oriented approachesefstahspects
need to be implemented in two steps: at firstag it set once the
respective state is reached; then, once the flagets the
crosscutting modifications (e.g. the crosscuttimgpavior) is put
to action.

[2], for example, present a sample implementatibra simple
publish-subscriber-protocol in JAsCo [14]. Theyideftwo hooks
Subscribe and Publish (see following snippets 1 2ndach of
which is bound to particular operations by meansainectors
(see snippet 2 and 4). The first hook is respoadit identifying
the point in time beginning from which publicatiosisould occur.
The second hook nominates those points that willadly cause
the publication to occur (once the first hook hasrbpassed).

1. hook Subscribe {

Subscri be(subscribe(..args))
{ execute(subscribe); } [...1}

2. SubscribeManager. Subscri be subscribe =
new Subscri beManager. Subscri be(
bool ean PSConponent. subscribe());

3. hook Publish {
Publ i sh(topublish(..args))
{ execute(topublish); } [...1}

Publ i shManager . Publ i sh publish =
new Publ i shManager . Publ i sh(
voi d Conponent X. updat e*(*));

[1] present another example that prevents the dapof dirty
documents, i.e. modified documents that haven'n kssered to
disk yet. The example makes use of three poinisets snippets
5, 6 and 7): The first one designates those paiatssing the
"dirty" flag to be set; the second one desighatessd points
causing the "dirty" flag to be unset; and the thiree refers to all
points that ought to be intercepted (in case tlirey"dlag is set).

5. pointcut makeDocumentDirty():
call(void Editor.edit());

6. pointcut makeDocunment Cl ean():
call (void Editor.save()) ||

call (void Editor.create());

7. pointcut disposeDocunent():

(call(void Editor.quit(
call (void Editor.create(
i f(docunmentDirty);

)) |
))) &

the occurrences of the hooks: It selects the sebonl only if the

first hook has occurred before.

-

-
%
/

hook_publishsubscribe N

/
/
/

*

- *

* .

Implementing such state dependent aspectual behaitio help
of multiple hooks or pointcuts (and their corregfiog advice) is
cumbersome, error-prone, and difficult to discgparficularly in
retrospect). This is because the causal dependesigyeen the
different hooks and pointcuts (and their correspumddvice) is
not obvious nor easy to detect. Close inspectiothef code is
necessary.

Novel approaches, such as presented in [2] andpfbnise to
free programmers from the need to keep track oftlstem state
manually; moreover, their (pointcut) notations wailto indicate
the aspect's dependency on a particular system etaticitly in

the program code.

This paper develops a notation that enables deemdopo
visualize the state dependent selection of joimggoBy doing so,
the notation aims to foster the use and specifinatif stateful
aspects in MDSD.

3. STATE-BASED QUERY MODELS

JPDDs provide abstractions to specify queries @ssels, their
features and relationships, as well as on messagegprogram's
control flow. They lack dedicated support for thisualization of
applicability conditions for stateful aspects, emtty, though. In
the following, a notation is developed that enalilegelopers to
visualize the state dependent selection of joim{soi

Starting point is a one-to-one visualization of {eenventional)
hooks as specified in [2] (see Figure 1): The firgbk designates
the point in time beginning from which publicatiosisould occur.
The second hook nominates those points that willadly cause
the publication to occur (once the first hook hasrbpassed).

e hook_subscribe N

o * -

PSComponent

<?jpl>subscribe(..}. :

«execution

ComponentX

| <?jp2>update*(..) o :

Figure 1: Two (Seemingly) Independent
Join Point Designation Diagrams

As with the implementation (cf. [2]), the dependgbetween the
hooks (in the sense that the latter hook will leaéffects only if
the former hook has been passed) is not visible.

Figure 2 improves over this situation by mergingthbo
representations of Figure 1 into a single repregiEmt That
resulting diagram reflects on the temporal depecgldretween

PSComponent

T r
! <?ipl>subscribe(.) !

E 'LJ «execution
|

1

\
1
1
|
|
|
1
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
1
1

= .

ComponentX

’ i

<?jp2>update*(.. !)

\ «execution
N /

~ ' Y el ta it

Figure 2: Representing Temporal
Dependencies Between Hooks

While this representation efficiently visualizese tlependency
between the hooks, it cannot be considered satisfaédrom a
modeling perspective. This is because what we sedwd
messages sent from any object to instances of PSComponeat a
ComponentX, respectively. What we are actuallyidgalith is a
stateful aspect, though. No indication is made concerning theestat
the system (or the involved objects) are in.

Figure 3 makes explicit what is hidden in the démgrshown in
Figure 2: The first message actually indicatesatesthange from
state "silent" to state "publish" (at least seemfithe perspective
of the aspect). Once in that state, any occurrefdde second
message (causing a self-transition) should bedepeed.

" "hook_publishsubscribe ™,

\
/ \
/ \

subscribe(..)

!

I

I

|

|

|

I

|

| 1
1

|

| 1

| 1
1

|

‘ @ |

| 1

| 1
1

|

| 1

| 1

| 1
1

1 1

\ |

\]

\ <?jp>ComponentX. /
AN update*(.. el

Figure 3: State-Based Selection
of Hooks

The state-chart based visualization of the joinnpaelection
improves over the interaction-diagram based vigatitin since it
emphasizes the dependency of the selection onutinent system
state. That way it helps to identify the correspngdaspect as a
stateful aspect. Using the novel implementation techniques
presented in [2], the representation can be furibez mapped
one-to-one to a corresponding aspect implementation

8. hook PublishSubscribe {

Publ i shSubscri be(subscri be(..args),
topublish(..args)) {

Wi ting: execute(subscribe) > Publish;
Publ i sh: execute(topublish) > Publish;
} [...11}

9. Stateful PublishManager. Publi shSubscribe ps = corresponding program code using the implementatjgproach

new St at ef ul Publ i shManager . Publ i shSubscri be(. B
bool ean PSConponent . subscr i be() presented in [1] (cf. [1]), it does not contemplatethe fact that

voi d Component X. updat e* (*)); we are dealing with atateful aspect. Instead, it reflects on the
communication with an Editor instance and hooks onto messages
4. ANOTHER EXAMPLE... being sent to that instance. From a modeling petis@e this is

Another example is taken from [1] and visualizedFigure 4: not satisfactory.
Three pointcuts are shown; the first one designaaesgs at which 10. pointcut di sposeDi rtyDocument():

.) - Il (void Editor. qui
some "dirty" flag should be set; the second onégdeses points (ca Ca(l‘{o('voi'fj il ocilflctr(e)zgt el(l))) .

at which that "dirty" flag should be unset; and ttmird one afterend(call (void Editor.edit()) &&
designates all points at which the aspectual behaviactually to bef orelﬁrzd(czl lE(d\{oi d Edit O(r)-)C)reat e()) Il
be performed (in cagbe "dirty" flag is set). _ call{vol ttor.save())): o
P (¥ 1iag) Figure 6 shows a state-chart based representatiavhich the
et TakeD Dirt . method invocations are interpreted as trigger event state
;7 ponat_makeboctmentbirty A transitions between states "clean” and "dirty".isTlepresentation

* ok helps developers to reason on the selection of jodints
depending on thetate the system (the document/the aspect) is

currently in.

* : Editor

<?jpl>edit()

i // pointcut_disposeDocument >~
- | , \
I. __________ i / \

\

!

|

Editor.save()) o
Editor g[gale(Editor.edit() i
@ |

i

i

1

i

i

|

1

!

,/ pointcut_makeDocumentClean) AN

* ok * : Editor

\
|
1
1
1
1
1
1 |
1
1
1
|
/

A
o),
)
v
4
Q
<
@
=]
9
®
]
2
@

e L)
__ T <?ip>Eg_it0r-quit() [
/7 pointcut_disposeDocument N N itorgreat() J:"}j'p"""":
! \ N e 1
i : \ 1 H
| * : Agpect N * : Editor | NS]
| | Attributes |
|] i Figure 6: State-Based Selection of Join
| |—documentDirty :| ! : T ! Point
| Boolean = trug : | <?jp3>(quit|create ! ! oints
\ |- operations—— H :‘l
\ H o
' ' 2ip3 In doing so, the representation reveals a (suppasgatecision in

the implementation (cf. [1]): Once in state "dirty@n invocation
to method "create" could escape its interceptiod, dnstead,
trigger a state transition to state "clean". Tovpre this, the actual
implementation relies on the internals of Aspeafdich executes
multiple pieces of advice — if applied to the sajoi@ point —

according to the order they are specified.

Figure4: Three (Seemingly) Independent
Join Point Designation Diagrams

Similar to the first case, the single specificat@fneach pointcut
does not reveal their temporal inter-dependenéiiggire 5 does a
better job in this respect as it explicates in \Wwhrder the

selected join points must (and must not) occur. 7 _pointeut_disposeDocument .,
/ Editor.create() N
- ——a / \
-~ pointcut_disposeDocument \\\ :' I:
\ ! i
P * : Editor \ i |
i : | Editor.save(Editor.edit() !
I T i
i | T : i |
| <oipledit) >l | |
! 1 | | !
. | | |
! 1 {not} i | i
! L <?ip2>(savelcreate)(), ' \ /
i : ' \ <?jp>Editor.quit() | ____/i/ _____
i F3 ! RN Editor.createl :—’?jp '
| | <?ip3>(quiticreate)() | i - -1 ;
\ 1 25 '
\, ! LJ s . - -
AN T T ! Figure 7. State-Based Selection of Join
"""""""""""""""" : i Points
Figure5: Representing Temporal We think th_at models, suc_h as in Figu_re 7, may helglarify
Dependencies Between Join Points such complications by explicating what is actuging on — for

sake of the comprehensibility to both the new amalware as well
However, even though the visualization is close tte as the experienced yet forgetful software developer

5. REFERENCES

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

Bockisch, Chr., Mezini, M., Ostermann, KQuantifying
over Dynamic Properties of Program Execution, DAW
Workshop, at: AOSD 2005, March 2005, Chicago, IL
De Fraine, B., Vanderperren, W., Suvée, D., Baic, J.,
Jumping Aspects Revisited, DAW Workshop, at: AOSD
2005, March 2005, Chicago, IL

Douence, R., Fradet, P., Stidholt, K@amposition, Reuse
and Interaction Analysis of Stateful Aspects, AOSD'05,
Lancaster, UK, March 2004, ACM, pp. 141-150
Dynamic Aspects Workshop, March 15, 2005, AOSD'05,
Chicago, IL, http://aosd.net/2005/workshops/daw/
Gybels, K., Brichau, J.Arranging language features for
more robust pattern-based crosscuts, in: Proc. of AOSD'0:
March 17-21, 2003, Boston, MA, ACM, pp. 60-69
Hanenberg, S., Hirschfeld, R., Unland, RMorphing
Aspects: Imcompletely Woven Aspects and Continous
Weaving, in: Proc. of AOSD '04 (Lancaster, UK, Ma
2004), ACM, pp. 46-55

Hanenberg, S., Schmidmeier, AspectJ Idioms for Aspect-
Oriented Software Construction, in: Proc. of EuroPLoP'0
June, 25-29, 2003, Irsee, Germany, pp. 617-644
Hanenberg, S., Unland, RRarametric Introductions, in
Proc. of AOSD 2003, March 17-21, 2003, Bos

(9]

(10]

(11]

(12]

(13]

(14]

Massachusetts, ACM, pp. 80-89

Hannemann, J., Kiczales, ®esign Pattern

Implementation in Java and Aspect], in: Proc. of
OOPSLA'02, November 2002, Seattle, WA, ACM
SIGPLAN Notices 37(11), pp. 161-173

Laddad, R.,Aspectj in Action: Practical Aspect-Oriented
Programming, Manning Publications, Greenwich, 2003
Lieberherr, K., Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns, PWS
Publishing Company, Boston, 1996

Ostermann, K., Mezini, M., Bockisch, ChExpressive
Pointcuts for Increased Modularity, in: Proc. of ECOOP'05,
Glasgow, UK, July 2005, ACM

Stein, D., Hanenberg, St., Unland, Rwery Models, in:
Proc. of UML 2004, October 2004, Lisbon, PortudMNCS
3273, pp. 98-112

Suvée, D., Vanderperren, W., Jonckers, JsCo: An
Aspect-Oriented Approach Tailored for Component-Based
Software Development, in: Proc. of AOSD'03, March 2003,
Boston, USA, ACM

